11-05-2006

Eckiger Sturm im runden Wasserglas

Auf schnell rotierenden Flüssigkeitsoberflächen entstehen polygonale Vertiefungen.

Von rotierenden Strömungen geht eine große Faszination aus, ganz gleich ob es sich um Tornados oder um Wasserstrudel in der Badewanne handelt. Solche Strömungen zeigen, dass auch unter nahezu rotationssymmetrischen Randbedingungen überraschend kompliziertes räumliches und zeitliches Verhalten auftreten kann. Jetzt haben dänische Forscher auf rotierenden Flüssigkeitsoberflächen erstmals vieleckige Strukturen beobachtet und fotografiert.

Tomas Bohr von der Technischen Universität von Dänemark und seine Kollegen haben Newtons berühmten Eimerversuch in abgewandelter Form wiederholt. Newton hatte bemerkt, dass in einem rotierenden, halb mit Wasser gefüllten Eimer die Wasseroberfläche nicht eben ist wie in einem ruhenden Eimer, sondern die Form eines Rotationsparaboloids annimmt. Die dänischen Forscher haben nun statt eines rotierenden Eimers einen ruhenden zylindrischen Behälter aus Plexiglas benutzt, bei dem sich lediglich der kreisförmige Boden, von einem Motor angetrieben, mit konstanter Frequenz drehte.

Abbildung: Typische Beispile für die Ausbildung der Polygone, Blick von oben. (Quelle: Jansson et al.)

Der Behälter war etwa zur Hälfte mit einer Flüssigkeit gefüllt: entweder mit Wasser oder mit dem wesentlich zähflüssigeren Ethylenglykol. Wenn sich die Bodenplatte des Behälters zu drehen begann, trieb die Zentrifugalkraft die Flüssigkeit nach außen, sodass die anfangs ebene Flüssigkeitsoberfläche deformiert wurde. Da die Wand des Gefäßes sich nicht mit der Flüssigkeit mitbewegte, bremste sie die angrenzende Flüssigkeit ab. Drehte sich der Boden nicht zu schnell, so hatte die Flüssigkeit eine rotationssymmetrische Oberfläche. War die Rotationsfrequenz aber hinreichend groß, so wurde die Drehsymmetrie gebrochen und die Oberfläche zeigte eine starke, zeitabhängige Deformation.

Zuerst bildete sich in der Flüssigkeit eine lang gestreckte Vertiefung, die fast bis auf den Boden des Gefäßes herabreichte, sodass dieser nur von einer dünnen Flüssigkeitsschicht bedeckt war. Diese Vertiefung drehte sich ebenfalls – allerdings wesentlich langsamer als die Flüssigkeit. Ließen die Forscher den Gefäßboden immer schneller rotieren, so nahm die Vertiefung in der Flüssigkeitsoberfläche zunächst die Form eines gleichseitigen Dreiecks an. Im Falle des Wassers konnten die Forscher nacheinander auch ein Quadrat, ein Fünfeck und ein Sechseck beobachten. Bei noch höheren Rotationsfrequenzen ließen sich keine Polygone mehr erkennen.

Bei ihren Experimenten haben die Forscher zwei verschiedene zylinderförmige Behälter benutzt, deren Durchmesser ca. 26 cm und 39 cm betrug. Welches Polygon auftrat, hing in erster Linie von der Füllhöhe der ruhenden Flüssigkeit und der Rotationsfrequenz des Bodens ab. Tomas Bohr und seine Kollegen bestimmten die Füllhöhen und Rotationsfrequenzen, bei denen ein Übergang von einem n-Eck zu einem (n+1)-Eck stattfand. Auf diese Weise konstruierten sie ein „Phasendiagramm“, dessen Struktur überraschend einfach war. Die Rotationsfrequenz f, an der solch ein Übergang stattfand, hing in guter Näherung linear von der Füllhöhe h ab: f ~ an h + bn. Dabei spielte die Größe des Behälters und die Art der benutzten Flüssigkeit keine große Rolle.

Bei den Experimenten mit Wasser lag die Reynolds-Zahl zwischen 105 und 1,5 × 106. Die Strömung um die polygonalen Vertiefungen war demnach turbulent, wie auch auf den davon gemachten Fotografien zu erkennen ist (siehe Abb.). Einige Bilder zeigen aber auch, dass auf der Flüssigkeitsoberfläche Strömungslinien von Wirbeln „umwickelt“ sind. Solch eine sekundäre Strömungsstruktur kennt man von der so genannten Görtler-Instabilität her, die sich in einer parallelen und zunächst geordneten Strömung über einer konkav gekrümmten Oberfläche entwickelt. Die dänischen Forscher interpretieren deshalb die von ihnen beobachteten sekundären Strömungsstrukturen als Görtler-Wirbel. Darüber hinaus traten auch Wirbel an den Ecken der Polygone auf.

Bisher gibt es noch keine zufrieden stellende Erklärung dafür, wie die mehreckigen Vertiefungen in den rotierenden Flüssigkeiten zustande kommen. Doch die Forscher sind sich sicher, dass die damit einhergehenden Wirbel und ihre Wechselwirkung miteinander wesentlich dazu beitragen, dass sich diese ungewöhnlichen Polygone bilden können und über lange Zeit stabil bleiben. Rotierende Flüssigkeiten sind also immer wieder für eine Überraschung gut.

Rainer Scharf

Weitere Infos:

Weitere Literatur:
 
copyright pro-physik.de
www.pro-physik.de