06-09-2007

Nichtleitende Teilchen erhöhen Leitfähigkeit

Quincke-Rotation von Partikeln in Suspensionen verbessert den Ladungstransport

Die elektrische Leitfähigkeit eines homogenen Mediums, in dem Kugeln eines anderen Materials eingebettet sind, hatte schon James Clerk Maxwell untersucht. Exakt lösbar ist dieses Problem nur, wenn die Kugeln regelmäßig und in großen Abständen angeordnet sind. Im Gegensatz dazu lässt sich die Leitfähigkeit einer Flüssigkeit, in der Kügelchen unregelmäßig verteilt sind, nur approximieren. Überraschenderweise können nichtleitende Kügelchen die Leitfähigkeit erhöhen, wie Elisabeth Lemaire und ihre Kollegen von der Université de Nice jetzt berichten.

Die Forscher haben ca. 70 µm große Kugeln aus elektrisch nichtleitendem PMMA (Polymethylmethacrylat) in Dodecan gelöst und diese Suspension einem elektrischen Feld ausgesetzt. Für Feldstärken von mehr als 2,5 kV/mm leitete die Suspension den elektrischen Strom deutlich besser als reines Dodecan. Hinter dieser unerwarteten Leitfähigkeitszunahme steckt ein nicht weniger verblüffender Effekt, den Georg Quincke vor über hundert Jahren beschrieben hatte. Kleine Partikel, die in einer Flüssigkeit gelöst sind, beginnen plötzlich zu rotieren, wenn sie einem hinreichend starken, zeitlich konstanten elektrischen Feld ausgesetzt werden. Dabei steht die Rotationsachse immer senkrecht zu den Feldlinien, sie zeigt jedoch in eine zufällige Richtung.

Für die Quincke-Rotation gibt es erst seit etwa 20 Jahren eine zufrieden stellende Erklärung. Dazu betrachtet man eine Kugel aus festem Material, die in einer Flüssigkeit zwischen den Platten eines geladenen Kondensators schwimmt. Das in der Flüssigkeit herrschende elektrische Feld polarisiert die Kugel und lässt dadurch elektrische Ladungen auf ihrer Oberfläche auftreten. Normalerweise sind diese Ladungen so verteilt, dass die Kugelhälfte, die der positiven Kondensatorplatte zugewandt ist, negativ geladen ist und umgekehrt. Die Anziehungskräfte zwischen den Ladungen auf der Kugel und den Kondensatorplatten stabilisieren die Kugel, die folglich in Ruhe bleibt.

Unter bestimmten Bedingungen kann sich auf der Kugeloberfläche aber auch die entgegengesetzte Ladungsverteilung einstellen. Dann haben die jeweils einander zugewandten Kugelhälften und Kondensatorplatten dasselbe Ladungsvorzeichen und stoßen sich ab. Dies geschieht, wenn die so genannte Ladungsrelaxationszeit der Kugel größer ist als die Ladungsrelaxationszeit der Flüssigkeit. Das ist z. B. der Fall, wenn das Kugelmaterial den elektrischen Strom wesentlicher schlechter leitet als die Flüssigkeit. Aufgrund der Ladungsverteilung ist die Ausrichtung der Kugel instabil. Gerät die Kugel aus dem Gleichgewicht, so greift ein Drehmoment an ihr an, das proportional zum elektrischen Feld ist. Ist die Feldstärke so groß, dass dieses Drehmoment die Viskosität der Flüssigkeit überwinden kann, so beginnt die Kugel zu rotieren. Auf der Kugel stellt sich dann sogleich wieder die ursprüngliche Ladungsverteilung her, sodass die Kugel mit konstanter Winkelgeschwindigkeit rotiert.

In früheren Experimenten konnten Elisabeth Lemaire und ihre Mitarbeiter zeigen, dass die Viskosität von Suspensionen (Öl mit PMMA-Kügelchen) in einem konstanten elektrischen Feld durch die Quincke-Rotation drastisch verringert wird. Die Teilchen richteten ihre Rotationsachsen längs der Wirbelrichtung der strömenden Flüssigkeit aus. Dadurch trieben sie die Strömung an und verringerten die Viskosität. Den Ladungstransport konnten die Plastikkügelchen ebenfalls erleichtern, obwohl ihre Rotationsachsen dabei ungeordnet waren. Mit ihren Oberflächenladungen trugen die rotierenden Kügelchen zum elektrischen Strom in der Flüssigkeit bei: Die positiv geladenen Kugelhälften bewegten sich stets in Feldrichtung, die negativen ihr entgegen. Die französischen Forscher haben die daraus resultierende Leitfähigkeitszunahme berechnet und für starke elektrische Felder eine gute Übereinstimmung mit den experimentellen Ergebnissen gefunden. Nichtleitende Teilchen können also tatsächlich die Leitfähigkeit erhöhen.

Rainer Scharf

Weitere Infos

Originalveröffentlichung:


Weitere Literatur:


 
copyright pro-physik.de
www.pro-physik.de